"Testing" for Advanced Networking Technologies

Doug Montgomery
Manager Internetworking Technologies
dougm@nist.gov
1-301-975-3630

Advanced Network Technologies Division Information Technology Laboratory

History of NIST's Efforts in Networking Technology Testing

Traditional Focus of Network Testing

- Goal:
 - Validation of commercially available end products
- Customer:
 - * Testing to support end consumers / procurement
- Activities:
 - * Conformance testing, standardized test suites, certification of test centers, formal specification

NIST's Rich History of Contributions

- ATM Forum Conformance Testing (ABR TM, PNNI)
- MPEG Conformance Testing
- ISDN Testing
- OSI Testing & GOSIP Test Program
- Formal Methods, Conformance Test System Research

Shifting the Focus of Test and Measurement

Evolving Focus of Network Testing

– Goal:

- Expedite the research, development, standardization, and commercialization of high risk technologies
- * Support the <u>early development</u> of new technology with broad, industry building potential
- * Test and measure early enough to impact the design of new technology

– Customer:

* Testing to support industry technology developers and researchers.

– Activities:

 Rapid prototyping, interoperability testing, simulation and modeling, performance testing, light weight test tools, experimentation tools

The Push and Pull of Testing

Pushing Testing Technology

- Traditional validation & conformance efforts pushed by user groups
- Required by procurement processes
- Vendors view testing as a necessary evil
- Testing may take on a life of its own, becoming a hindrance to technology development and adoption

Creating Pull for Testing Technology

- Testing as a voluntary service made available to industry
- Testing must provide a tangible value to developers
- Testing technology and tests must be easily usable and available
- Tests and tools must be available very early in product life cycle
 - * "Good enough" testing early in the design and development cycle
- Testing often involves rapid prototyping and analysis of designs

Creating Pull for Testing

Choosing targets

- Deciding where and how to apply testing technology
- Surfing the technology waves
 - * Industry must be committed to solving problems and building products
 - + NIST doesn't create the waves
 - * NIST's work must be early enough to impact design and expedite the commercial development of first products
 - + NIST's works with industry to expedite the development of the wave and influence its shape and direction
 - * As design / standards mature and first products are released
 - + The wave has broken and it is too late to do "testing" on the leading edge
 - + Typical rides on technology waves are 6 to 36 months.

Creating Pull for Testing...

Creating Testing Technology that People Want to Use

- Usability and availability of testing technology is key to its success
 - * Test tools must make minimal requirements on the system under test
 - + don't require or expect test harnesses and interfaces
 - * Test tools must be usable by product research and development staff
 - + a more comprehensive test tool that is too complex won't be used
 - Test tools must be portable or remotely accessible
 - + exploit ubiquitous WWW technology (remote access, applets)
 - + exploit commonly available hardware and software platforms

Creating Pull for Testing...

Good Enough Testing

- Goal is to expedite design and first development
 - * Not to certify final product
- Lightweight / usable systems that address 80% of testing requirements
 - Don't focus on negative testing
- Assume test system users are very knowledgeable about the technology
 - * Test systems & languages can produce diagnostics rather than verdicts

ANTD - Types of "Testing" Activities

Performance Testing

- Tools and techniques to assist in the measurement and characterization of networking technologies, middleware, distributed systems, and hardware components
- Focus is on the development of the tools and techniques
- Characterization of general technology not benchmarking specific products

Rapid Prototyping / Reference Implementations

- Feasibility prototypes of emerging technologies / standards
- Must be done very early in design / standardization cycle
- NIST prototypes / reference implementations serve several purposes:
 - testing feasibility of designs
 - * improving the quality of specifications / standards
 - * providing publicly available basis for expediting commercial development
 - * establishing a reference / basis for testing other implementations

ANTD - More Types of "Testing"

Interoperability Testing

- Methodologies and tools to facilitate interoperability testing & pilots
- Interoperability testing focused on early stages of product R&D
- NIST's roles in industry interoperability testing:
 - * providing reference implementations and testing tools
 - * facilitating multi-vendor interoperability testing events / testbeds

Test & Measurement Research

- Advanced methodologies to improve the capabilities and quality of testing and measurement in areas such as:
 - * Evaluating collaboration environments
 - * Testing distributed, topologically sensitive, multi-party protocols
 - * Fine grained instrumentation of protocol implementations
- Some Examples of our recent work

Prototype / Reference Implementation: NIST Cerberus

Leading edge prototype of IETF IPSec technology

- Reference prototype implemented as Linux kernel modules
- Platform for further NIST research in advanced IPSec issues
- Public basis for interoperability testing, pilot deployment & research
 - * 4 software releases since Q4 1997
 - * Used by ~150 organizations in industry, government and academia

Cerberus:

- Full implementation of IETF IPv4 AH and ESP security protocols
 - * Supports both Host and Router IPSec functions
 - * Supports large library of security transforms / crypto algorithms
 - * Integrated with NIST Pluto++ Internet Key Exchange (IKE) prototype
 - Core component of IPSec-WIT on-line test system
- Future research and development
 - * policy management, IPv6, integration with IKE / PKIX, mobility, multicast

Cerberus Software Architecture

ANTD "Testing"

Interoperability Testing: IPSec-WIT

• IPSec / IKE / PKIX Interoperability testing anytime, anywhere

- Asynchronous interoperability testing ... test at your own rate
- Test without relocating system under test, or test system

IPSec WWW-based Interoperability Tester

- Practical testing tool semi-automated, WWW driven tester
- Built around NIST Cerberus IPSec and Pluto++ IKE implementations
- WWW forms to navigate interoperability test scripts (~400)
- WWW / CGI driven configuration of Cerberus / Pluto++ prototype
- WWW-based / email examination of test results

Future IPSec-WIT and WWW-based Interoperability Testing

- Expand current system to PKIX, IPv6 IPSec
- Tools for automated test suite generation, extensible test languages
- Port IPsec-WIT test engine to other IPsec implementations
- Explore use of other WWW technology in on-line test systems

IPsec WIT System Architecture

Performance Measurement: NIST Net

NIST Network Emulation Tool

- General purpose "Internet cloud" performance emulator
- Platform Linux kernel loadable modules on PC hardware
- Enables controlled, laboratory emulation of IP performance dynamics
 - * Bandwidth limitations (including asymmetric bandwidth scenarios)
 - Delay distributions (jitter)
 - * Packet loss, corruption, reordering
 - * Router congestion avoidance schemes (e.g. DRD)
- Supports interactive interface or parameterization from trace files

Applications

QoS sensitivity testing, ICV Evaluations, VOIP testing

Future Directions

 Use of emulation in large scale hybrid simulations & test environments.

NIST Net

ANTD "Testing"

Performance / Experimentation: ISPI

NIST ISPI - Integrated Services Protocol Instrument

- Measurement / experimentation tool for IP QoS protocols
- Support of protocol engineering and application experimentation
- ISPI is "smart" about: RTP/RTCP, RSVP, IP Multicast, SDR protocols

ISPI Capabilities

- Monitors multicast (SDR) sessions
- Computes performance of real time (RTP) streams
 - * Measures local RTP performance
 - * Reports remote RTCP performance
- Enables proxy resource reservation (RSVP) experiments
- Provides diagnostic traces of reservation state in network

Future Directions

- ISPI enhancements RSVP Diagnostics, RTSP, Multicast Routing,
- Advanced Testing technology for RSVP integrated services

NIST ISPI - RTP/RSVP Performance

	rated Services Protocol Instrument	
Jan 29, 1998 16:22:07 NIST Int	-*- I S P I -*- ernetworking Technologies Group	NIST/ITL/ANTD Version 0.0
	I MONITOR: Single Receiver]	
UserName: Mic [Too	hael Speer(Sun) <speer@eng.sun.com l: vic-2.8/SunOS-5.6-sun4u]</speer@eng.sun.com 	>
Address: 224.2.172.238 Port: 51482	Media: video Payload: H261 At TProt: RTP/AVP Channel: 0 Ra	tr: -none- te: 65536
SRC Sender Info	by_abs_secondPackets KBit Frame Pkt %PLost Lost Lat	Total_ e KByte Packet
	6.8 0.1 2 29.6 420 10.9 1	
SRC Receiver Info	by_abs_second KBit Frame Pkt %PLost TotalPkt	Lost Jitter
R> Michael Speer(Sun)	12.0 0.0	165 0
Type Resv of Style Reservation Info Serv	Avg Peak Bucket MinPol Pat Rate Rate Depth Unit MT r(Kbps) p(Kbps) b(B) m(B) M(B	h Band Slack U Width Term) R(Kbps) S(ms)
T> Sender Tspec L> ISPI Rspec cl WF	128.0 128.0 16000 576 918 5.0 5.0 5 50 150	8 0
F> Receiver Rspec No resv st	atus	
Type 'u' to go back one scre	en:	
		

● IP Quality of Service: There is no silver bullet

- Fundamental goal of NGI research program
- Many new technologies / approaches to IP QoS
 - * IP / ATM, RSVP / IntServ, DiffServ, MPLS
- MPLS provides mechanisms to leverage many QoS issues

NIST Switch - IP QoS Research Platform

- Public domain, modular platform for MPLS research & development
- Supports: label switching, LDP, RSVP, DiffServ, ATM
- Current Focus:
 - Integrated MPLS-based forwarding
 - * Use of RSVP to support MPLS, explicit QoS Routing
- Future Work:
 - New QoS and load-balancing routing algorithms
 - * Heterogeneous IP QoS end-to-end environments

Testing Methodology Research: DIPPER

Distributed Internet Protocol and PERformance Test System

- Testing and experimentation with IP QoS hindered by lack of tools
- Need to test topologically sensitive signaling protocols
- Test system portability to support field testing

DIPPER:

- Distributed test tool for protocol functionality / performance testing
 - * Initial focus: RSVP / IntServ and NIST Switch testing
- Multi-party distributed system built on top of UCB MASH Toolkit
- Object oriented (O-Tcl and C++) test system design
- Test system components and test scripts run in WWW browser
- Master Tester single point of control of distributed testers
- O-TCL based distributed programming protocol test language

Future directions

Use of mobile agents, application of new WWW technology to testing

DIPPER

For More Information ...

- NIST
 - http://www.nist.gov/
- NIST / Information Technology Laboratory (ITL)
 - http://www.itl.nist.gov/
- NIST / ITL/ Advanced Networks Technologies Division (ANTD)
 - http://www.antd.nist.gov/
- NIST / ITL / ANTD / Internetworking Technologies Group (ITG)
 - http://www.antd.nist.gov/itg/
- Next Generation Internet (NGI) Program
 - http://www.ngi.gov/
- Internet Engineering Task Force (IETF)
 - http://www.ietf.org

